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0. Outline of Today’s Lecture

1. Interpretation and simulation.
2. Machine Learning and Big Data.
3.   Validation.

Today’s Stat: Multiple Regression

Today’s Case: 
“Estimation of Redevelopment Probability using Panel 

  Data-Asset Bubble Burst and Office Market in Tokyo-,”

2cshimizu@nus.edu.sg



page.

NUS: Research MethodologyNUS: Research Methodology 

page.

1. Interpretation and Simulation.
• There is no clear-cut dividing line between analysis and 

interpretation. They very often overlap. Interpretation refers 
to the analysis of generalisations and results. 

• Through interpretation, the meanings and implications of the 
study become clear. Analysis is not complete without 
interpretation and interpretation cannot proceed without 
analysis. Both are thus interdependent. Interpretation can be 
conceived of as a part of analysis.

• Analysis and interpretation occupy the last stage of the 
research, conceptually or in terms of thought, they occupy the 
first stage, since the necessary theoretical and practical 
knowledge of the future shape of the result is acquired much 
before the actual work is undertaken. 

3cshimizu@nus.edu.sg
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Case1:  Tokyo Green Building Label

• Tokyo Metropolitan Government‘s Green Labeling System for 
Condominiums. 

• Green Labeling System for Condominiums (2002, revised in 
2005 & 2010), mandatory for new construction and major 
refurbishment to organize and publish information based on a) 
building insulation, b) energy efficiency & performance, c) 
lifespan extension (durability) and d) greening (plants etc.) of 
the building. 

• The evaluation results for the respective items are expressed as 
a number of star symbols, max: ★★★ .

4cshimizu@nus.edu.sg
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Method: Hedonic model

),,,( ),(),(),,( jikjiitji HHNEXGfP

),,( tjiP     : New condominium price of condominium i and dwelling j at time     t (1: asking price, 2: 
transaction price) 

 iG       : Green label of condominium i 
 ),( jiX     : Building characteristics of condominium i & dwelling j 
 kNE     : Location characteristics of region k 
 ),( jiHH   : Buyer characteristics of condominium i and dwelling j 

(Quasi) cross-sectional hedonic model with robust S.E., time fixed effects 
and buyer characteristics 

5cshimizu@nus.edu.sg
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Data:

Tokyo condominium prices database with property and buyer 
characteristics 2001-2011 (N=48,740):

• Data source: Japanese Real Estate Economic Institute's database 
(asking prices & characteristics of property) combined with large-
scale questionnaire survey of transaction prices and household 
characteristics (Recruit., Co). 

• Variables: 
Asking price, transaction price, name of development company, 
development scale, size and age of property, location 
characteristics (coordinates, address, nearest station, distance to 
nearest station), building characteristics (building area, land area, 
building structure). 

6cshimizu@nus.edu.sg
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Data:

Variables (continued): 
• Buyer characteristics (age of buyer, annual income, size of family, 

etc.) gathered by questionnaire survey of the Recruit.

• Tenure type (leasehold types etc.)

• Property management type (24-hour etc.) 

• First-month contract rate (i.e. time on market). Higher the first 
month contract rate, the more affordable prices are in relation to the 
condominium's features.

7cshimizu@nus.edu.sg
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Estimation Models:
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Estimation result, Base Model: Model 1

(1) 
baseline 

OLS

(2) Robust 
reg

lp lp
Transaction 
price discount

-0.0347*** -0.0316***

(-27.87) (-26.54)

Green asking 
price premium

0.0609*** 0.0586***

(18.66) (18.31)

Green 
transaction 
price discount2

-0.00918* -0.00948**

Transaction Based Premium 0.0609－0.00918＝0.05172

9cshimizu@nus.edu.sg
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Estimation result considering Time Effect : Model 2
Model 2: log( price)

Regressor Coefficient
green2005 0.045**
green2006 0.0487***
green2007 0.0596***
green2008 0.0844***
green2009 0.096***
green2010 0.0438***
tgreen2005 -0.0486**
tgreen2006 -0.003
tgreen2007 0.010
tgreen2008 -0.034**
tgreen2009 -0.029**
tgreen2010 0.008

Property & condo attributes Yes
Developer fixed effects Yes

Location controls Yes
Management fixed effects Yes

Buyer characteristics Yes
Time fixed effects Yes 

N 48,740
R2 0.814

10cshimizu@nus.edu.sg
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Robustness Test: Estimated Result considering Household’s 
Characteristics: Model 3.

(1) 
baseline 

OLS

(2) Robust 
reg

(3) Income 
Q1

(4) Income 
Q2

(5) Income 
Q3

(6) Income
Q4

lp lp lp lp lp lp
Transaction 
price discount

-0.0347*** -0.0316*** -0.0359*** -0.0354*** -0.0337*** -0.0343***

(-27.87) (-26.54) (-11.72) (-15.94) (-16.16) (-13.37)

Green asking 
price premium

0.0609*** 0.0586*** 0.0408*** 0.0398*** 0.0702*** 0.0777***

(18.66) (18.31) (3.63) (6.74) (13.12) (12.45)

Green 
transaction 
price discount2

-0.00918* -0.00948** -0.0158 -0.00692 -0.00936 -0.00975

0.025 0.03288 0.06084 0.06795

11cshimizu@nus.edu.sg
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Conclusions: Interpretation

• Compared to non-labelled properties, labelled buildings 
commanded a premium of 6.09% for the base asking price and 
5.19% for the base transaction price (6.09% - 0.9%).

• Premium appears to rise over time (exception: 2010)
• Green asking price premia are found to progress with increasing 

incomes of buyers (from 4% to nearly 8%). 

→
• The average price premium observed in recorded transaction 

prices is mainly driven by households with above-average 
incomes paid for green-labelled properties.

12cshimizu@nus.edu.sg
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ln ln G D P P C ln O L D D E P
ln T P O P

it it it

it it

P
(1)

GDPPC is per capita GDP,  
OLDDEP is the old age dependency ratio, which is defined 
 by the ratio of population aged 65+ to the working population 
 (i.e. population aged 20-64),  
TPOP is total population.  
The disturbance term is represented by it .  

Empirical method: ECM & Estimation Models.
Nishimura (2011), Nishimura and Takáts (2012) , Takáts (2012) 

cshimizu@nus.edu.sg
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Data:

14

　 Japan U.S.
Data format Prefectural panel data State panel data 
Data period 1976 to 2010 1975 to 2011

Housing price

Estimated hedonic function based on Ministry of
Land, Infrastructure, Transport and Tourism "Land
Price Data (Residential Land)," we set data for
representative locations by prefecture and estimated
quality-adjusted public land prices (amount base)
using estimated hedonic function

We estimated state-by-state quality-adjusted
housing prices (amount base) using Federal
Housing Finance Agency "All-Transactions
Indexes" rates of change and "Summary Statistics
for House Prices" price median values

Income
Prefectural income based on the Cabinet Office's
"Prefectural Economic Accounts" (linked using
price comparisons at base points in time)

U.S. Department of Commerce, "Bureau of Economic
Analysis" GDP by state (Chained by price ratio
between base periods)

Interest rate
National value from Bank of Japan's "Average
Contractual Interest Rate on Bank Loans"
(synthesized rate for all Japanese banks)

Federal Reserve Board, "Contract Rate on 30-Year,
Fixed-Rate Conventional Home Mortgage
Commitments" (National)

Consumer price
index

Consumer price index by prefectural capital
(synthesized) from Statistics Japan's "Consumer
Price Index"

United States Department of Labor, "Bureau of
Labor Statistics" CPI (All Items) by state

New housing
supply

New housing starts (total number for owned homes,
rental homes, issued housing, and condominiums)
from the Ministry of Land, Infrastructure, Transport
and Tourism's "Statistical Survey of Construction
Starts"

U.S. Census, "Building Permits Survey," New
Privately-Owned Housing Units Authorized by
Building Permits by state

Population by age
group

Based on 'national census(population ratios by five-
year age groups),Ministry of Internal Affairs and
Communications  calculated population figures by
multiplying these ratios by the population,
demographics, and household data based on the
Basic Resident Register

U.S. Census, "State Population Estimates"
Population by age and state

cshimizu@nus.edu.sg
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Demographic Changes:
Dependency Ratio and Old age dependency ratio

• Nishimura (2011)

• Dependency Ratio =    , 
  

•

• Takáts (2012)

• Old age dependency Ratio =  , 
  

15cshimizu@nus.edu.sg
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Describing Data: Graphical

16
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Describing Data: Graphical

17
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Data Analyzing: Regression Model.

18

No. of
observa

tions
Adj. R2

Japan 1,645 0.629 0.2188 0.0000 -1.3167 0.0000 0.9177 0.00 -0.1033 0.00

Standard error/t value 0.058 / 3.76 0.186 / -7.06 0.290 / 3.17 0.009 / -11.33

U.S. 1,836 0.439 0.4515 0.0000 -0.9067 0.0000 0.7514 0.00 -0.1272 0.00

Standard error/t value 0.042 / 10.66 0.116 / -7.79 0.116 / 6.46 0.010 / -12.29

Old dependency ratio Total population EC termGDP per capita

The coefficient on per capita GDP :
Japan  0.2188,   US 0.4515,  Takáts:0.8842.

Old age dependency ratio:
Japan -1.3167, US -0.9067, Takáts:-0.6818.

Total population: 
Japan 0.9177 , U.S. 0.7514, Takáts: 1.0547.

cshimizu@nus.edu.sg
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A revised schematic description of the steps involved in an 
econometric analysis of economic models. 

19cshimizu@nus.edu.sg

G.S.Maddara and K. Lahiri (2009), “Introduction to Econometrics” 4th edition.
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Robustness Check Japan 

20

Model No. of
observations Adj. R2 Time fixed

effect
Local fixed

effect

Japan
Base model: BM 1,645 0.629 0.2188 *** -1.3167 *** 0.9177 *** Yes None

without time fixed effect 1,645 0.159 0.4401 *** -1.9702 *** 2.5376 *** None None
with local fixed effect 1,645 0.621 0.2302 *** -1.7280 *** 2.0220 *** Yes Yes

with local fixed effect and
without time fixed effect

1,645 0.182 0.3891 *** -2.2071 *** 4.0806 *** None Yes

without EC term 1,645 0.602 0.1468 ** -1.0790 *** 0.8333 *** Yes None
BM+ Interest rate 1,598 0.629 0.1433 ** -1.4071 *** 1.0508 *** Yes None

BM + New housing supply 1,645 0.627 0.2297 *** -1.2701 *** 1.1372 *** Yes None
BM + interest rate + new

housing supply
1,598 0.629 0.1664 *** -1.3675 *** 1.2517 *** Yes None

BM + interest rate + new
housing supply ( 1 period lag)

1,598 0.628 0.0890 -1.3569 *** 1.1941 *** Yes None

GDP per capita
Old  age

dependency
ratio

Total
population

cshimizu@nus.edu.sg
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Robustness Check U.S. 

21

Model No. of
observations Adj. R2 Time fixed

effect
Local fixed

effect

U.S.
Base model: BM 1,836 0.439 0.4515 *** -0.9067 *** 0.7514 *** Yes None

without time fixed effect 1,836 0.247 0.5874 *** -1.1576 *** 0.6163 *** None None
with local fixed effect 1,836 0.454 0.4525 *** -0.5363 *** 1.8079 *** Yes Yes

with local fixed effect and
without time fixed effect

1,836 0.263 0.5847 *** -1.2666 *** 0.8503 *** None Yes

without EC term 1,836 0.394 0.4714 *** -0.7821 *** 0.8222 *** Yes None
BM+ Interest rate 1,783 0.449 0.4415 *** -0.9375 *** 0.7385 *** Yes None

BM + New housing supply 1,834 0.459 0.3819 *** -0.7824 *** 0.6308 *** Yes None
BM + interest rate + new

housing supply
1,783 0.468 0.3725 *** -0.8128 *** 0.6139 *** Yes None

BM + interest rate + new
housing supply ( 1 period lag)

1,783 0.469 0.4555 *** -0.6489 *** 0.4272 *** Yes None

GDP per capita
Old  age

dependency
ratio

Total
population

cshimizu@nus.edu.sg
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A revised schematic description of the steps involved in an 
econometric analysis of economic models. 

22cshimizu@nus.edu.sg

G.S.Maddara and K. Lahiri (2009), “Introduction to Econometrics” 4th edition.
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Forecast:

• Forecast the real land prices in Japan using the regression,
• The projection on demographic changes released by the 

IPSS(National Institute of Population and Social Security 
Research).

• Based on natural increases/decreases calculated from the 
survival probability and the number of births by cohort and 
social increases/decreases due to movement between regions. 

• Population projections : the medium variant projection, 
which is based on the assumption of medium fertility, unless 
otherwise mentioned.

23cshimizu@nus.edu.sg
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Demand: Number of live births (JPN)
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Shimizu,C and T.Watanabe(2010), “Housing Bubble in Japan and the United States,” Public Policy Review Vol.6, No.2,pp.431-472
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Old Age Dependency Ratio
• Assumption on future population

– The medium variant projection on demographic changes 
calculated by IPSS(National Institute of Population and 
Social Security Research) 
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25



page.

NUS: Research MethodologyNUS: Research Methodology

page. 26

Source: Authors' calculation. The map is provided by Ministry of Land, Infrastructure, 
Transport and Tourism, "National Land Numerical Information: Administrative Zones Data."
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Historic and Forecasted Demographic Impacts on 
Land Prices 

The contribution of demographic changes: 
1976-2010 :  -3.8 percent per year
2010-2040 :  -2.4 percent per year

27cshimizu@nus.edu.sg
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Source: Authors' calculation. The map is provided by Ministry of Land, Infrastructure, 
Transport and Tourism, "National Land Numerical Information: Administrative Zones Data."
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Simulation:
• First, to examine the extent to which housing demand would 

be created by accepting immigrants and to what degree this 
would offset the decrease in residential land prices, we will 
estimate the number of immigrants (foreign workers) that 
would be needed to maintain the 2010 land price level. 

• Second, we will estimate the extent to which housing demand 
would be created and residential land price decreases offset if 
the retirement age were raised from 65 to 70 or 75 in order 
to utilize the labor power of the older generation. 

• Third, we will estimate the extent to which housing demand 
would be created and residential land price decreases offset if 
the female employment rate were raised to the same level 
as the male employment rate in order to utilize the labor 
power of women.

29cshimizu@nus.edu.sg
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Simuration1 : Immigration Impact.

30cshimizu@nus.edu.sg
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Simuration2 : Retirement Year.

31cshimizu@nus.edu.sg

a) Effect If Retirement Age Raised to 70 b) Effect If Retirement Age Raised to 75

Residential Land Price Simulation Results (N = 1,683)
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Comparison of Policy Effect.

32cshimizu@nus.edu.sg

a) Effect if Female Employment Rate Raised b) Comparison of Different Policy Effects

Residential Land Price Simulation Results 3 (N = 1,683)
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Interpretation:
• The results showed that a) around 40 million immigrants 

would be needed by 2040 to maintain housing asset values as 
of 2010. In other words, the ratio of foreigners in the total 
Japanese population would need to increase to approximately 
30%. At the present time, it is extremely difficult to imagine 
Japan accepting this kind of society.

• Meanwhile, b) to promote the social advancement of women, 
even assuming a fixed birthrate, it would be necessary to 
provide more childcare alternatives for families in order to 
maintain the housing asset value to a little extent. If the aim of 
society were to increase the birthrate, then greater 
infrastructural development such as new daycares would be 
required, which would incur significant costs.

33cshimizu@nus.edu.sg
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• The foregoing arguments suggest that the most effective and 
least costly policy would be c) extending the retirement age, 
especially given that life expectancy is expected to lengthen 
due to advances in medical technology. 

• In reality, this solution could only be achieved by shaping the 
future by implementing multiple related policies. Moreover, it 
is necessary to recognize that the effects of such a policy 
would have only a temporary impact, as the baby boomers in 
Japan (born in 1947-1949) are entering their retirement age of 
65 in 2015 and raising the retirement age has the effect of 
delaying this phenomenon for 5-10 years. 

• Indeed, if the number of births and productive-age population 
do not increase, the problem would remain un-solved. 

34cshimizu@nus.edu.sg
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2. Machine Learning and Big Data. 

• (1) What is big data? 
• Big data is not a new phenomenon, but one that is part of a 

long evolution of data collection and analysis. Among 
numerous definitions of big data that have been introduced 
over the last decade, the one provided by Mayer-Schönberger
and Cukier (2013) appears to be most comprehensive: Big 
data is “ the ability of society to harness information in 
novel ways to produce useful insights or goods and 
services of significant value” and “things one can do at a 
large scale that cannot be done at a smaller one, to extract 
new insights or create new forms of value .”

• Mayer-Schönberger,V and Cukier K, (2013), Big Data: A revolution that will 
transform how we live, work and think, UK: Hachette.

35cshimizu@nus.edu.sg
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• In the community of analytics, it is widely accepted that big 
data can be conceptualized by the following three dimensions 
( Laney, 2001 ): 

• a). Volume 
• b). Velocity 
• c). Variety 

• Laney D,(2001),  3D data management:  Controlling Data 
Volume, velocity, and variety, US:META Group.

36cshimizu@nus.edu.sg
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Real Time Index in Labor Market in Japan:

37cshimizu@nus.edu.sg
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Heat Map 

38cshimizu@nus.edu.sg
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(2) Machine Learning.

39cshimizu@nus.edu.sg

• The development of computer algorithms to transform data into 
intelligent action → machine learning . 

• Available data, statistical methods, and computing power rapidly 
and simultaneously evolved.

• Growth in data necessitated additional computing power, which 
in turn spurred the development of statistical methods to analyze 
large datasets.

Brett Lanz (2015) 
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How Machine Learn?
• Regardless of whether the learner is a human or machine, the 

basic learning process is similar. It can be divided into four 
interrelated components: 

• a) Data storage: utilizes observation, memory, and recall to provide a 
factual basis for further reasoning. 

• b) Abstraction: involves the translation of stored data into broader 
representations and concepts. 

• c) Generalization: uses abstracted data to create knowledge and 
inferences that drive action in new contexts. 

• d) Evaluation: provides a feedback mechanism to measure the utility of 
learned knowledge and inform potential improvements. 

40cshimizu@nus.edu.sg
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Knowledge representation

• a) Mathematical equations 
• b) Relational diagrams such as trees and graphs 
• c) Logical if/else rules 
• d) Groupings of data known as clusters 

• →The choice of model is typically not left up to the machine. 
Instead, the learning task and data on hand inform model 
selection. 
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(3) Machine learning in practice
• a) Data collection : The data collection step involves 

gathering the learning material an algorithm will use to 
generate actionable knowledge. 

• b) Data exploration and preparation : The quality of any 
machine learning project is based largely on the quality of its 
input data. 

• c) Model training : By the time the data has been prepared 
for analysis, you are likely to have a sense of what you are 
capable of learning from the data. 
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• d)Model evaluation : Because each machine learning model 
results in a biased solution to the learning problem, it is 
important to evaluate how well the algorithm learns from its 
experience. 

• e)Model improvement : If better performance is needed, it 
becomes necessary to utilize more advanced strategies to 
augment the performance of the model. Sometimes, it may be 
necessary to switch to a different type of model altogether. 
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(4) Matching input data to algorithms
Model Learning Task
Supervised Learning Algorithms
Nearest Neighbor Classification
Naive Bayes Classification
Decision Trees Classification
Classification Rule Learners Classification
Linear Regression Numeric prediction
Regression Trees Numeric prediction
Model Trees Numeric prediction
Neural Networks Dual use
Support Vector Machines Dual use
Unsupervised Learning Algorithms 
Association Rules Pattern detection
k-means clustering Clustering
Meta-Learning Algorithms Bagging Dual use
Boosting Dual use
Random Forests Dual use
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Classification Method
• Several classification methods that have been popular in big 

data applications;

• a) k nearest neighbour algorithm, 
• b) regression models, 
• c) Bayesian networks, 
• d) artificial neural networks and 
• e) decision trees. 
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Typical classification task involving only two categories. 

• A bank loan officer may want to evaluate whether approving a 
mortgage application is risky or safe, and consequently he/she 
needs to determine a label for the corresponding applicant 
(‘risky’ or ‘safe’). 

• In practice, a classification task is implemented through the 
following three stages: 

• Stage 1 : Specify a suitable algorithm for classification, that 
is, a classifier. 

• Stage 2 : Optimize the selected classification algorithm using 
a set of training data. 

• Stage 3 : Make predictions using the optimized classification 
algorithm. 
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3. Validation. 

• Forecasting Housing Prices. 

• a) Regression models, 

• b) Artificial neural networks and 

• c) Decision trees. 
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Evaluation Bias

• Evaluation Bias is a necessary evil associated with the 
abstraction and generalization processes inherent in any 
learning task. In order to drive action in the face of limitless 
possibility, each learner must be biased in a particular way. 

• Consequently, each learner has its weaknesses and there is no 
single learning algorithm to rule them all. Therefore, the final 
step in the generalization process is to evaluate or measure 
the learner's success in spite of its biases and use this 
information to inform additional training if needed. 
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Artificial neural networks 
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Chihiro Shimizu(2016), Introduction to Statistics for Market Analysis, Asakura-shoten. (in Japanese)
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Decision Tree: Artificial intelligence /AI 
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Validation with Prediction Power: Boxplot of Number 
of trials 500 times with Sampling and Replacement.
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Regression           Decision Tree      Neural Network
Chihiro Shimizu(2016), Introduction to Statistics for Market Analysis, Asakura-shoten. (in Japanese)
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Overfitting: 
• A model that seems to perform well during training, but does 

poorly during evaluation, is said to be overfitted to the 
training dataset, as it does not generalize well to the test 
dataset. 

• Solutions to the problem of overfitting are specific to 
particular machine learning approaches. For now, the 
important point is to be aware of the issue. How well the 
models are able to handle noisy data is an important source of 
distinction among them.
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P. Newbold, W.L. Carlson, B. M. Thorne (2010), 
“Statistics for Business and Economics”7th edition.
Chapter 12: Multiple Regression

• Multiple Regression

Introduction to Statistics03
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Today’s Case:

• Shimizu, C., K. Karato and Y. Asami (2010), “Estimation of 
Redevelopment Probability using Panel Data-Asset Bubble 
Burst and Office Market in Tokyo-,”Journal of Property 
Investment & Finance, 28(4), 285-300.
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1.Motivations: The purpose of this research

• 1.What happened in the Real Estate Market of Tokyo during the “lost 
decade” ?

• -What have we learned from these ups and downs in the real estate   
market? 

• -Have recent real estate investment risk management efforts 
incorporated these lessons?

• 2. What are economic conditions for the redevelopment/conversion of 
buildings?

• - In the 1980s bubble, repeated rounds of speculative real estate 
transactions targeted urban areas in particular, and numerous lots were 
converted in poor ways. 

• - Upon the collapse of the bubble, poorly located office spaces and the 
pencil buildings built on residential tracts suffered high vacancy rates. 
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Distance from CBD

Rent Office

Residential

Excess Return

Opportunity Loss

Rent Curve : 
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Hedonic Index of  Office rent and Residential Rent 
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2.Theoretical Framework : Conditions for redevelopment
• Wheaton (1982) assumes that housing stock developed at one 

point in time exists at multiple time points.

58

Rent Rent

• Post Redevelopment Iincome

• Capital 
Cost

• Existing Income
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Empirical Analysis;

• Rosenthal and Helsley (1994) used an empirical analysis to 
verify Wheaton’s conditions for redevelopment.

• McGrath (2000) conducted an empirical analysis of 
commercial real estate by considering redevelopment 
conditions while taking into account soil pollution risks of 
land for redevelopment.
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Panel Data Analysis: Office Use to Residential Use

• Panel Data 1991→1996→2001
• Bubble Bursting Period

• Conversion from Office Use to Residential Use
• a)- The conversion of offices into housing apparently occurs after 

landowners acknowledge land-use failures and closely examine 
profitability of land when it is used for office buildings and for housing.

• b)- We can ignore variables of urban planning constraints in the office-to-
housing conversion case.

• c)- We can ignore land intensification costs. 
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Theoretical Framework: 

 LKFQ ,

 
L

QciKLKFRr
R

R

K

,max

61

Capital K  and constant land area L are invested to produce  

a building with a total floor space of Q .  

the landowner destroys the existing building at a cost of c  per floor area.
Given the discount rate i and the rent RR  for floor area Q , the 
maximized profit per land area for the new building for housing  

(1)

(2)
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Conditions for Redevelopment

01 QcRQR CR

the redevelopment condition (2) can be rewritten as follows.

(3)

the production function: LAKLKF ,  

the optimization condition in Equation (1)  

 iKLKFR R , .  
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Econometric Model
• the binary choice model with panel data

63

itiit

ititit

u
u~

2,1,,2,1 tni

0~
it 1it → redevelopment

0~
it 0it → continue with the present use

iitiitititit Pr0~Pr1Pr

the redevelopment probability:

itu : error component 
 : coefficient of the common constant term 
i : each group’s random effect 
it : random variable  
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3. Data
• Land uses and use conversions
• There is about 1.7 million(1,665,152) buildings 

Metropolitan Area.
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3. Data
• Land uses and use conversions
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Figure 1. Office Buildings (1991) = 40,516

66

Of the 40,516 office buildings 
that existed in 1991, 2,607 
were redeveloped or 
converted into housing by 
1996, with the remaining 
37,909 buildings used still for 
offices. 

Of the office buildings that 
existed in 1996, 3,576 were 
redeveloped or converted into 
housing by 2001. 
The remaining 36,940 office 
buildings remained as offices. 
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Table 2. Descriptive Statistics of Office and Housing Rent Data

67

Average Standard
deviation Average Standard

deviation

Rent (yen/m2) 4,851.48 1,925.12 3,248.26 824.9

Contractual space (m2) 264.02 309.87 41.03 20.63
Distance to Tokyo centre (minutes) 12.46 6.25 10.53 7.17

Number of years after construction (years) 16.19 10.29 9.26 7.28
Distance to station (minutes) 4.13 2.91 6.76 3.89

Total floor space (m2) 3,426.36 4,520.41 – –
Number of observations= 13,147 488,348

Office Housing
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4. Estimation Results

• 4.1. Rent functions for office and housing uses
• -Hedonic Equations

• 4.2. Condition for profit gaps

• 4.3. Random probit model estimation
• -Floor Space Production Function
• - Random probit model 
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Table 5. Office and Housing Rent Function Estimation Results

69

Method of Estimation OLS
Dependent Variable
Property Characteristics (in log) Coefficient t-value Coefficient t-value

Constant 8.374 181.483 0.253 –24.999 
FS : Contractual space 0.19 59.102 –0.197 –141.297 

BY: Number of years after construction –0.093 –24.174 –0.070 –259.324 
WK: Distance to nearest station –0.219 –46.556 –0.034 –70.827 

ACC : Time distance to Tokyo centre –0.112 –25.362 –0.066 –117.539 
TA: Total floor space 0.051 16.932 – –

SRC : SRC building dummy 0.199 34.02 0.013 29.494
Ward (city) Dummy

Railway/Subway Line Dummy
Time Dummy

Adjusted R square= 0.608 0.758
Number of observations= 13,147 488,348

Yes Yes

OR : Rent of Office (in log) RC : Rent of Condominium (in log)

Yes Yes
Yes Yes
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Figure 2. Spatial Distribution 
(Housing rent > Office rent):1995
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2.33%
(40,516Buildings)
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Figure 3. Spatial Distribution 
(Housing rent > Office rent):2000
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17.89%
(40,516Buildings)
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Figure 3. Spatial Distribution 
(Housing rent > Office rent):2005
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27.58%
(40,516Buildings)
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Table6.Panel Data Outline

73

Year Variable  Obs. mean std. dev. min max 
1996 RR yen 40516 8399 2836 2837 26542 

 RC yen 40516 4720 765 3018 6451 

 million yen 40516 −10.91 55.11 −2712.34 −0.01 

 - 40516 0.06 0.25 0 1 

 million yen 2607 −2.25 7.07 −153.73 −0.01 

 million yen 37909 −11.51 56.90 −2712.34 −0.01 

        
2001 RR yen 40516 6402 2162 2163 20232 

 RC yen 40516 4808 779 3073 6570 

 million yen 40516 −7.19 37.66 −1878.82 0.02 

 - 40516 0.09 0.28 0 1 

 million yen 3576 −1.44 4.21 −101.27 0.00 

 million yen 36940 −7.75 39.38 −1878.82 0.02 

Note. RR is the housing rent, RC is the office rent,  is the difference in income Eq.(b) 
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Selecting a Multivariate Technique

74cshimizu@nus.edu.sg

J.H.Hair, W.C.Black, B.J Babin, R.H Anderson (2010), 
“Multivariate Data Analysis”7th edition.
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Table 7. Probit Estimation of Redevelopment Probability
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 Total Region 1 Region 2 Region 3 
0.3181 0.0576 0.4447 0.3407 

 (0.0093) (0.0058) (0.0250) (0.0219) 
Constant −13.5617 −5.7765 −9.3597 −9.7961 

 (0.4317) (0.1630) (0.5139) (0.6578) 

    
10.5011 2.9883 7.6478 8.0016 

 (0.3327) (0.0903) (0.4046) (0.4998) 
0.9910 0.8993 0.9832 0.9846 

 (0.0006) (0.0055) (0.0017) (0.0019) 

     
Number of obs. 81032 30110 19898 30468 
Individual Number of groups 40516 15055 9949 15234 

Wald (chi squared) 1160.1 
[.000] 

98.8 
[.000] 

315.3 
[.000] 

242.8 
[.000] 

Log likelihood −15071.5 −2567.9 −3792.0 −8043.3 
Note. Standard errors are presented in parentheses. The dependent variable in the probit equals one if the parcel is 
redeveloped, zero if parcel remains in its current use.  is a correlation coefficient of random effect. Wald statistics 
test null hypothesis which all parameter is zero. Brackets [ ] are p-value for Wald test. 
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Table 7. Probit Estimation of Redevelopment Probability
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5.Conclusion and Future work:
• This is the first empirical study using panel data to analyse 

conditions for redevelopment.

• We found that if random effects are used to control for 
individual characteristics of buildings, the redevelopment 
probability rises significantly when profit from land after 
redevelopment is expected to exceed that from present land 
uses. This increase is larger in the central part of a city.

• Limitations stem from the nature of Japanese data limited to 
the conversion of offices into housing. In the future, we may 
develop a model to generalize land-use conversion conditions.
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Tokyo Special District:

78

Tokyo Special District:
Area: 621.97 square kilo-meter

Population: 8,742,995
(All Japan:127,510,000)

Data source:
Real estate advertisement magazine

(1986-2008: 23 years)
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Panel Data Analysis: Office Use to Residential Use

• Conversion from Office Use to Residential Use

• a)- The conversion of offices into housing apparently occurs 
after landowners acknowledge land-use failures and closely 
examine profitability of land when it is used for office 
buildings and for housing.

• b)- We can ignore variables of urban planning constraints in 
the office-to-housing conversion case.

• c)- We can ignore land intensification costs. 
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coef. t-value

Constant term 24.140 2.673

log K 0.390 10.704

log L 0.670 15.077

Annual trend −0.011 −2.396

Ward dummy Yes

Adj. R2 0.959

Table 4. Floor Space Production Function

Note: The annual trend indicates an estimated coefficient of the trend term 
representing the time of completion

LAKQCobb–Douglas Production Function: 
Q: stands for the total floor space, K: for construction costs and 
L :for the site area size
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